KNO scaling function of modified negative binomial distribution

نویسندگان

  • Noriaki Nakajima
  • Naomichi Suzuki
چکیده

We investigate the KNO scaling function of the modified negative binomial distribution (MNBD), because this MNBD can explain the oscillating behaviors of the cumulant moment observed in e+e− annihilations and in hadronic collisions. By using a straightforward method and the Poisson transform we derive the KNO scaling function from the MNBD. The KNO form of experimental data in e+e− collisions and hadronic collisions are analyzed by the KNO scaling function of the MNBD and that of the negative binomial distribution (NBD). The KNO scaling function of the MNBD describes the data as well as that of the NBD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyses of multiplicity distributions by means of the Modified Negative Binomial Distribution and its KNO scaling function

We analyze various data of multiplicity distributions by means of the Modified Negative Binomial Distribution (MNBD) and its KNO scaling function, since this MNBD explains the oscillating behavior of the cumulant moment observed in e+e− annihilations, h-h collisions and e-p collisions. In the present analyses, we find that the MNBD (discrete distributions) describes the data of charged particle...

متن کامل

Analyses of multiplicity distributions by means of the Modi ed Negative Binomial Distribution and its KNO scaling function

We analyze various data of multiplicity distributions by means of the Modi ed Negative Binomial Distribution (MNBD) and its KNO scaling function, since this MNBD explains the oscillating behavior of the cumulant moment observed in ee annihilations, h-h collisions and e-p collisions. In the present analyses, we nd that the MNBD (discrete distributions) describes the data of charged particles in ...

متن کامل

Fractional Fokker-Planck Equation in Time Variable and Oscillation of Cumulant Moments

Fractional derivative in time variable is introduced into the Fokker-Planck equation of a population growth model. It’s solution, the KNO scaling function, is transformed into the generating function for the multiplicity distribution. Formulas of the factorial moment and the Hj moment are derived from the generating function, which reduces to that of the negative binomial distribution (NBD), if...

متن کامل

Multiplicity Distributions in Strong Interactions: a Generalized Negative Binomial Model

A three-parameter discrete distribution is developed to describe the multiplicity distributions observed in totaland limited phase space volumes in different collision processes. The probability law is obtained by the Poisson transform of the KNO scaling function derived in Polyakov’s similarity hypothesis for strong interactions as well as in perturbative QCD, ψ(z) ∝ zα exp(−zμ). Various chara...

متن کامل

توزیع چندگانگی ذرات باردار در نابودی +e-e در انرژی مرکز جرم GeV54-57 و مقیاس KNO

In this paper, we investigate the multiplicity of charged particles in e+ e– annihilation by using different models. To achieve this we first fit the multiplicity distribution of charged particles in the energy range of 54-57 GeV by using both the Poisson distribution and KNO scaling, then we compare these results with multiplicity distribution at the lower energies. This comparison shows that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996